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The importance of intramolecular OH---OH hydrogen-bonds
(H-bonds) in the effective molecular recognition of carbohy-
drates is highlighted; specifically, the 1,3-cis-diaxial H-
bonded OH groups of 1 are shown to provide an efficient
binding motif for bidentate coordination of the amino-
carbonyl Hoogsteen site of the CG base-pair through the
formation of two cooperative intermolecular H-bonds; this
result suggests that intramolecularly H-bonded carbohy-
drate OH groups may be considered as multidentate units
able to H-bond cooperatively.

Deoxygenated oligosaccharides which are present in natural
productst and aminoglycoside antibiotics? are known to directly
interact with a number of DNA and RNA sequences, re-
spectively. However there is limited structural information on
the molecular basis of such a saccharide—nucleic acid recogni-
tion in solution.3

The design of many low molecular weight nucleic acid
ligands has been based on hydrogen-bonding (H-bonding)
recognition of the Hoogsteen sites of the B-DNA grooves.4 One
of the most important characteristics of multiple H-bonded
complexes is the non-additivity of the H-bonds therein; this
property has given rise to the concept of cooperativity.> As part
of a general project to study H-bonding cooperativity and its
implications in the molecular recognition of carbohydrates, we
present here our initial effort to use H-bonding cooperativity to
efficiently bind sugars in the grooves of B-DNA.

Carbohydrate 1,2- and 1,3-diol motifs are present in many
DNA and RNA binders.2 We have previously demonstrated that
the hydroxy groups of the 1,3-cis-diaxial diol 1 are intra-
molecularly H-bonded (OH-2—OH-4); the presence of this H-
bond polarizes the ¢ O-H bonds and enhances the donor ability
of OH-4 and acceptor ability of OH-2 [Fig. 1(a)].6
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Fig. 1 Carbohydrate-derivatives and CG base-pair used in the binding
studies.
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Molecular modelling studies of the carbohydrate-derivative 1
and the cytidine—guanosine (CG) base-pair indicate that the
hydroxy groups of 1 are suitably positioned to bridge both
amino-carbonyl Hoogsteen binding sites of CG in a bidentate
fashion [Fig. 1(b)]. A sugar—CG complext could potentially be
stabilized by two cooperative intermolecular H-bonds (Fig. 2);
thiswould providethefirst example of H-bonding cooperativity
in carbohydrate-base pair recognition.

For the reasons outlined above, the binding of 1 to CG has
been investigated.t Binding studies were performed by titrating
1 (0.08 mM) with an equimolar mixture of tri-O-acet-
ylguanosine (G) and tri-O-acetylcytidine (C) (2 mM).78 Under
these experimental conditionsonly al:1 complex of the diol 1
and CG could be expected. The titration data were fitted to a
1:1 binding model, taking into account the dimerization of CG
(Table 1).8 The measured association constant| for the 1-CG
complex was 1491 M—1. The binding of the aromatic diol 2 to
CG was aso studied in the same way with the expectation of
observing induced chemical shifts of the naphthyl proton
resonances and thereby obtaining more data for model fitting.
AG° values for the 1-CG (—4.4 £ 0.1 kcal mol—1) and 2-CG
(—4.2 £ 0.1 kcal mol—1) complexes were greater than expected
for acomplex stabilized by a single H-bond, or two isolated H-
bonds. This result implies the interplay of cooperative H-
bonding in 1-CG and 2-CG recognition.

To quantify the effect of H-bonding cooperativity on the
stabilization of the 1-CG comple, it is necessary to know the
number of intermolecular H-bonds formed between 1 and CG.
IH NMR variable temperature experiments, NOESY, and
deuterium exchange experiments were carried out with the aim
of determining structural information.

The hydroxy proton resonances of 1 were deshielded upon
complexation with CG, which indicates that the binding process
is mediated by H-bonding of both OH groups of the carbohy-
drate (Table 2). In contrast, the amide proton (NH-3) of diol 1
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Fig. 2 Schematic representation of the complex formed by the carbohydrate
1 and the CG base-pair.

Table 1 Stability parameters of the interaction between the CG base-pair
and the carbohydrate derivatives 1-3 (299 K, CDCl3)

Compound 1 2 3
KdM—1 1491 1091 6.7
AG°/kcal mol—1 —44+01 —-42+01 -11+01
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Table 2 AS/AT of the exchangeable resonances of 1 in the free and bound
state to the CG base-paira

Resonance of 1 ASIAT (1)P/ppb K-1 AS/AT (1-CG)</ppb K—1
—5.2

OH-4 . —13.2
OH-2 —2.8 —6.8
NH-3 —-29 —45

aMeasured between 293-318 K. P[1] = 1.1 X 10-4 M. ¢[1] = 1.1 X
104 M; [CG] = 1.5 X 10-3M (1:CG = 1:13).

showed minimal displacement on complexation. According to
previous reports,629 comparison of AS/AT of the OH reso-
nances of the free ligand 1 and the 1-CG complex aso implies
that both OH groups are involved in intermolecular H-bonds
(Table 2).

NOESY spectra of mixed samples of 1 and CG in different
ratios** revedled cross peaks between the OH proton reso-
nances of 1 and the exchangeable protons of CG; these could
not unambiguously be attributed to chemical exchange or
intermolecular NOEs. However, the same experiments showed
that the C(N4—H); proton resonates at lower field in the presence
of a higher concentration of diol 1, which further suggests its
involvement in H-bonding with 1.

Additional evidence for the preferred complexation site of
CG was obtained by deuterium exchange experiments. An
equa quantity of deuterated diol 1 (1-D) was added to separate
samples of CG (experiment A: CG2mM) and 1:CGina2:1
ratio (experiment B: 1:CG 4 mM:2 mM), to facilitate the
formation of the hypothetical 1:2 CG: 1 complex. In each case
acontrol experiment was carried out (experiment A: CG 2 mM;
experiment B: 1:CG 4 mM:2 mM). *H-NMR spectra were
acquired at t = 0 and 17 days. Both samples containing 1-D
showed complete H-D exchange of the C amino protons after
17 days, while the amino protons of G were only partialy
deuterated after the same period of time. In the control
experiments a small and comparable decrease in the signal
intensity of al the exchangeable CG protons was observed.
From this result we infer that on average the C-amino group is
in contact with the deuterated hydroxy groups of 1-D for longer
than the amino protons of G, and that a1:1 1-CG complex is
favoured over a2:1 1-CG complex, whichisin agreement with
the Job plot determined stoichiometry.q

Molecular modelling!! of the 1-CG complex supported the
results of our *H-NMR experiments and confirmed that the
carbonyl group G(C¢-0O) is the H-bond acceptor best |ocated to
form a second H-bond to OH-4 of 1 .11 The calculated 1-CG
structure also showed that the non-exchangeable protons of the
1-CG complex are very distant from each other, which could
explain why only ambiguous intermolecular NOEs were
detected.

To quantify theinfluence of theintramolecular OH-2—0H-4
H-bond on the formation of intermolecular H-bonds between 1
and CG, the complexation of monoalcohol 3 with CG was
studied.$t The K, for the 3-CG complexis7M—1(Table1); the
formation of one H-bond between the monoalcohol 3 and the
CG base-pair thus corresponds to a AG® value of —1.1 kcal
mol—1, while the AG® for two intermolecular H-bonds in the
1-CG complex is more than four times greater than this value.
This demonstrates that the formation of H-bonds between 1 and
CG is non-additive (cooperative); furthermore the importance
of intramolecular OH---OH H-bonds in the effective molecular
recognition of carbohydrates is highlighted.

Our work has shown that in the future we may consider the
intramolecularly H-bonded OH groups of carbohydrates as
multidentate units capable of H-bonding cooperatively. Specifi-
caly, the 1,3-cis-diaxia relative configuration of carbohydrate
OH groups serves in apolar medium as an efficient binding
motif for bidentate coordination of the C(N4—H);/G(C®é-O) site
of CG through formation of two cooperative intermolecular H-
bonds.
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Notes and references

tC (2,3 ,5-tri-O-acetylcytidine) and G (2',3',5' -tri-O-acetylguanosine)
were purchased (Sigma) and used without further purification. Carbohy-
drate-derivatives 1, 2 and 3 were synthesized.1® 1-D was prepared by
repeatedly dissolving 1 (1.4 mg, 3.5 mmol) in CD30D (5 x 0.5 mL) and
evaporating to dryness. The deuterated residue (1-D) was dried under high
vacuum and heated at 40 °C in the presence of P,Os and dissolved in CDCl
(2 mL) to give a solution of concentration 1.8 mM.

T All binding studies were performed at 299 K using freshly prepared
solutions in CDCl3z which were always passed through basic alumina and
collected over 4 A molecular sieves prior to use; the aluminaand molecular
sieves employed were freshly activated by heating at 600 °C under high
vacuum. Each experiment was carried out at least two timesand AG® values
were reproducible within £0.1 kcal mol—1.

§ The feasibility of this titration experiment relied on the high stability of
the CG base-pair? in chloroform (K, = 104105 M—1). The imino proton
G(N1-H) experienced minimal chemical shift displacement (upfield) upon
complexation with 1 (A§ < 0.1 ppm), which is consistent with the CG
complex remaining intact during the titrations.8a

9 The 1: 1 stoichiometry of thecomplex 1: CG wasdetermined by aJob plot
based on the chemical induced shifts of the hydroxy resonances. The CG
base-pair dimerizes in chloroform.8a2 We have measured a dimerization
constant of 55 M—1.

|| Reverse titration experiments (CG vs. 1) were aso performed. Fitting of
the induced chemical shifts of the C(C5-H) proton resonance to a 1:1
complexation model gave a value of K, (1460 M—1) which was in good
agreement with the value determined experimentally from the 1 vs. CG
titrations.

** NOESY spectra (500 ms, 278 K, 600 MHz) were recorded for two
samples of different 1: CG molar ratio: (i) 1: CG 1:3,[1] = 6.7 X 104 M;
[CG] = 2x 103 M; (ii) 1:CG 3:1,[1] = 6 X 10-3M; [CG] =2 x 103
M.

11 Molecular mechanics calculations were carried out using MM211a
(carbohydrates) and AMBER?1b (nucleosides, CG base-pair and carbohy-
drate-CG complexes) with the GB/SA solvent model for chloroform.1c
Molecular modelling of the complex involing the C(C=0) and G(N-N) of
CG (minor groove of the base-pair) indicated that such a complex is not
stable. This could be explained on the basis of steric hindrance of the
acetylated ribose moieties.

1t Theuse of 3 allowed usto evauate the effect of asecond OH inal,3-cis-
diaxia relative configuration on the energetics of the recognition process
between 1 and CG.
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